Current Transducer LA 305-T/SP13

 $I_{PN} = 240 \text{ A}$

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

E	lectrical data				
I _{PN}	Primary nominal r.m.s. current		240		A
I _P	Primary current, measuring range		0 ± 800		Α
Ŕ	Measuring resistance		$\mathbf{R}_{_{\mathrm{Mmin}}}$	R _{M m}	ах
	with ± 15 V	@ ± 240 A _{max}	3	80	Ω
		@ ± 800 A _{max}	3	8	Ω
I _{SN}	Secondary nominal r.m.s. current		120		mΑ
sn K _N	Conversion ratio		1 : 200	0	
v c	Supply voltage (± 10 %)		± 15		V
I _c	Current consumption		20 + I _s		mΑ
Ŭ _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		2.5 ¹⁾		kV
-			1.0 ²⁾		kV

Accuracy - Dynamic performance data								
X _G	Overall accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$		±0.9					
e	Linearity	< 0.1		%				
		Тур	Max					
I _o	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$		± 0.25	mΑ				
I _{OM}	Residual current ³⁾ @ $I_p = 0$, after an overload of 3 x I_{PN}		± 0.50	mΑ				
I _{OT}	Thermal drift of I_0 - 25°C + 70°C	± 0.15	± 0.45	mΑ				
t _{ra}	Reaction time @ 10 % of I _{PN}	< 500		ns				
t	Response time 4) @ 90 % of IPN	< 1		μs				
di/dt	di/dt accurately followed	> 100		A/µs				
f	Frequency bandwidth (- 3 dB)		DC 100					
G	eneral data							
T _A	Ambient operating temperature	- 25	+ 70	°C				
Ts	Ambient storage temperature		+ 85	°C				
R _s	Secondary coil resistance @ $T_A = 70^{\circ}C$	23		Ω				
m	Mass	400		g				
	Standards 5)	EN 50	155					

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

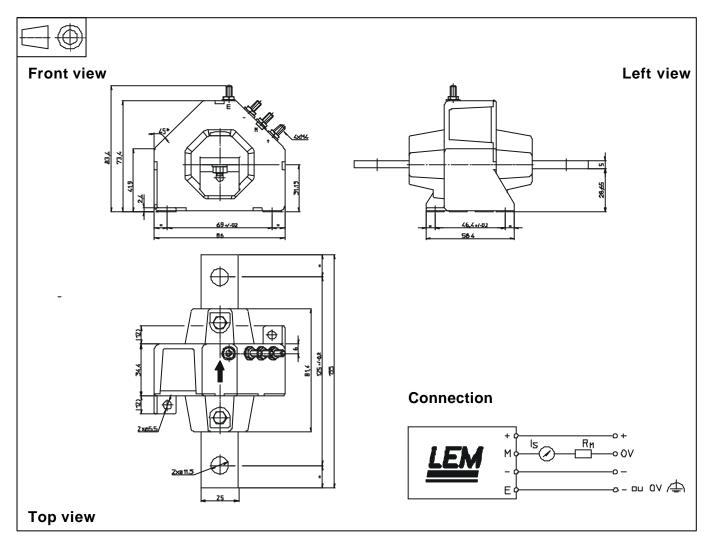
- I_{PN} = 240 A
- I_P = 0..±800 A
- **K**_N = 1:2000
- V_c = ±15 (±10 %) V
- $V_{d} = 2.5 \, \text{kV}$
- **T**_A = -25 .. + 70 °C
- Shield between primary and secondary
- Connection to secondary circuit on M4 threaded studs
- Potted
- VRT Burn-in
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies
 (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes : ¹⁾ Between primary and secondary + shield

- ²⁾ Between secondary and shield
- ³⁾ The result of the coercive field of the magnetic circuit
- $^{\scriptscriptstyle 4)}$ With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available.

021213/2

Dimensions LA 305-T/SP13 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

 General tolerance 	± 0.5 mm
 Fastening 	
by transducer	2 holes Ø 5.5 mm
	2 M5 steel screws
Fastening torque, max.	4 Nm or 2.95 Lb Ft.
or	
by the primary	2 holes Ø 11.5 mm
 Connection of secondary 	M4 threaded studs
Fastening torque	1.2 Nm or .88 Lb - Ft

Remarks

- $\mathbf{I}_{_{\! S}}$ is positive when $\mathbf{I}_{_{\! P}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.